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We revisit the issue of the temperature dependence of the specific heat C�T� for interacting fermions in one
dimension. The charge component Cc�T� scales linearly with T, but the spin component Cs�T� displays a more
complex behavior with T as it depends on the backscattering amplitude, g1, which scales down under renor-
malization group transformation and eventually behaves as g1�T��1 / log T. We show, however, by direct
perturbative calculations that Cs�T� is strictly linear in T to order g1

2 as it contains the renormalized backscatter-
ing amplitude not on the scale of T, but at the cutoff scale set by the momentum dependence of the interaction
around 2kF. The running amplitude g1�T� appears only at third order and gives rise to an extra T / log3 T term
in Cs�T�. This agrees with the results obtained by a variety of bosonization techniques. We also show how to
obtain the same expansion in g1 within the sine-Gordon model.
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I. INTRODUCTION

The hallmark of a Fermi liquid is the linear dependence of
the specific heat C�T� on temperature. A deviation from lin-
earity at the lowest temperatures generally implies a non-
Fermi-liquid behavior. This generic rule is satisfied in dimen-
sions D�1, e.g., the non-Fermi-liquid behavior near
quantum critical points is characterized by a divergent effec-
tive mass and sublinear specific heat. On the other hand, the
behavior of the best studied non-Fermi-liquids—one-
dimensional �1D� systems of fermions—is more subtle. A 1D
system of fermions can be mapped onto a system of 1D
bosons. As long as these bosons are free, i.e., the system is in
the universality class of a Luttinger liquid, the specific heat is
linear in T despite that other properties of a system show a
manifestly non-Fermi-liquid behavior. However, backscatter-
ing and umklapp scattering of original fermions give rise to
interactions among bosons. If these interactions are margin-
ally irrelevant, C�T� may acquire an additional log T depen-
dence.

In a series of recent publications, several groups studied
specific heat of interacting Fermi systems in dimensions 1
�D�3.1–10 These systems are Fermi liquids, and the lead-
ing term is C�T�=�T. The subleading term is, however,
nonanalytic: it scales as ADTD �with an extra log T factor in
three dimensions�, and in 1�D�3, the prefactor is ex-
pressed exactly via the spin and charge components of the
fully renormalized backscattering amplitude6,9,10

AD = − aD�m*

kF
�2

�fc
2��� + 3fs

2���� , �1�

where aD is a number �a2=3��3� /2��, and fs��� and fc���
are components of the backscattering amplitude f��=�� �� is
the angle between the incoming momenta�. The spin and
charge contributions to the specific heat can be extracted
independently by measuring the specific heat at zero and a
finite magnetic field �a strong enough magnetic field �BH

	T reduces the spin contribution to 1 /3 of its value in zero
field�.

As D→1, TD becomes T, and the universal subleading
term in the specific heat becomes comparable to the leading
term. In addition, the spin component of the backscattering
amplitude in one dimension flows under a renormalization
group �RG� transformation and, for a repulsive interaction,
which is the only case studied in this paper, scales as 1 / log T
in the limit T→0.11 The charge component, fc���, on the
other hand, remains finite. Judging from Eq. �1�, one might
then expect that the charge component of the specific heat in
one dimension scales as T, while the spin component, Cs�T�,
scales as T / log2 T.

This simple argument is, however, inconsistent with re-
cent result obtained by Aleiner and Efetov9 �AE� for the
model of weakly interacting electrons. They developed a
powerful “multidimensional bosonization” method, in which
fermions are integrated out and the action is expressed solely
in terms of interacting, low-energy bosonic modes. In one
dimension, AE showed that Cs�T� behaves as T / log3�T� for
T→0 �in disagreement with the RG argument�, and that the
logarithmic flow of fs shows up in C�T� only at fourth order
in the interaction. Similar results have been previously ob-
tained for the Kondo model12 and XXZ spin 1 /2 chain,13

which are believed to be in the same universality class as 1D
fermions with repulsive interaction. �Earlier perturbative
studies of C�T� in one dimension yielded different results: in
Ref. 14, C�T� was argued to be linear in T to all orders in the
interaction, whereas Ref. 15 found that Cs�T� scales as
T / log2 T; both results are in disagreement with the result by
AE.�

The functional form of Cs�T� is not a purely academic
issue. In a strong enough magnetic field �BH	T, the log T
term is replaced by the log H one. Measuring the field de-
pendence of C�T ,H�, one can explicitly determine the func-
tional form of C�T ,H=0�. We note in passing that the issue
of universal temperature corrections to thermodynamic quan-
tities is not restricted to the specific heat. A number of re-
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searchers studied the universal temperature and wave vector
dependence of the spin susceptibility.16 Another example of a
universal, nonanalytic behavior is the T�H behavior of the
specific heat of a two-dimensional �2D� d-wave supercon-
ductor in a magnetic field.17

Absence of the logarithmic renormalization of Cs�T� be-
low fourth order of perturbation is a rather nontrivial result
in view of Eq. �1�, but even more so because backscattering
in one dimension contributes to the specific heat already at
first order in the interaction �see Sec. III B�. Moreover, both
first- and second-order contributions to Cs�T� can be straight-
forwardly obtained in a computational scheme in which they
appear as contributions from low energies, of order T. In the
RG spirit, one might expect these terms to contain the run-
ning backscattering amplitude at a scale of order T. How-
ever, in one dimension, the existence of a particular compu-
tational scheme, in which the answer comes from low
energies, does not actually guarantee that the corresponding
coupling is a running one, as 1D systems with a linear spec-
trum are well known to exhibit anomalies, similar to
Schwinger terms in current-current commutation relations.

From computational viewpoint, the anomaly-type contri-
bution to C�T� can be equally obtained either as a low-
energy contribution, or as a contribution from high energies,
of the order of the cutoff. In the latter case, the correspond-
ing coupling is on the scale of the cutoff, rather than T. One
then has to explicitly evaluate higher-order terms to verify
whether the coupling is a bare one or a running one.

This running versus bare coupling dilemma was discussed
actively in the earlier days of bosonization,18–20 and is re-
lated to a more general issue of how to treat properly the
high-energy cutoffs in theories with linear dispersions.21

Our interest in the 1D problem is threefold. First, we want
to understand which of the backscattering couplings entering
C�T� are the running ones and which are the bare ones. We
argue below that anomaly-type terms should be treated as
high-energy contributions, for which the couplings are at the
cutoff scale. The running coupling appears in C�T� due to
nonanomalous contributions, which can be uniquely identi-
fied as low-energy contributions. Second, we would like to
check directly whether the low-energy model of interacting
fermions in 1D model is a renormalizable theory or not, i.e.,
whether the dependence of the ultraviolet cutoffs can be in-
corporated into a finite �and small� number of renormalized
vertices. Third, we want to establish parallels between the
direct perturbative expansion in the backscattering amplitude
in momentum space, and the real-space calculations within
the sine-Gordon model. In particular, we want to understand
how anomaly-type contributions appear in real-space calcu-
lations. This has not been considered in earlier works,9,13,22,23

for which the main interest was a search for contributions
with the running coupling.

A. Model

We consider an effective low-energy model of 1D fermi-
ons with a linearized fermionic dispersion 
k near �kF, 
k
= �vF�k�kF�, and with a short-range four-fermion interac-
tion U�q�. We set a fermionic momentum cutoff at a scale f

�generically, comparable to the lattice constant�, and assume
that fermions with energies larger than vFf account for the
renormalization of the bare interaction into an effective one,
which acts between low-energy fermions and depends not
only on transferred momentum, but also on two incoming
fermionic momenta. We then use the g-ology notations11 and
introduce three dimensionless vertex functions, g1, g2, and
g4, which describe scattering processes along the Fermi sur-
face with zero incoming and 2kF transferred momenta, zero
incoming and zero transferred momenta, and 2kF incoming
and zero transferred momenta, respectively. At first order in
the interaction, g1=U�2kF� /2�vF, and g2=g4=U�0� /2�vF.
The effective low-energy model only makes sense if the cou-
plings gi vanish before the scale of f; otherwise, the low-
energy and high-energy sectors could not be separated. A
way to enforce this constraint, which we will adopt, is to
assume that the interactions gi are nonzero only for trans-
ferred momenta �either around zero or 2kF�, which are
smaller than f. Accordingly, we introduce two “bosonic”
cutoffs: b, set by the interaction with the momentum trans-

fer near 2kF �g1 vertex�, and ̄b, set by the interaction with a
small momentum transfer �g2 and g4 vertices�, and request
that both are smaller than f. More precisely, we assume that

f − b,f − ̄b 	 T . �2�

The model interaction is shown in Fig. 1. We will see that
there is an interesting dependence of the specific heat on the

ratio b /f, but no dependence on the ratio ̄b /f.
The two-cutoff model with b�f has been used in the

canonical 1D bosonization approach and in the subsequent
analysis of the sine-Gordon model. It was also considered in
Refs. 18 and 19 in the analysis of the electron-phonon inter-
action in one dimension. To our knowledge, it has not been
explicitly verified that the specific heat for the effective low-
energy model is the same as for the original model of fermi-
ons with parabolic-type dispersion and a generic interaction
U�q�, i.e., that all contributions to C�T� from fermionic en-
ergies exceeding f can be absorbed into the three couplings
gi. We also note that, in the bosonization procedure invented
by AE �which is not based on the g-ology model�, the cutoff
imposed by the interaction is less restrictive than the fermi-
onic cutoff �i.e., b	f�, because in their theory the propa-
gators of long-wavelength bosonic modes are obtained by
integrating independently over fermionic momenta linked by

( )U q

q2 Fk

b�

b�

0

FIG. 1. A model interaction potential with two cutoffs: ̄b near
q=0 and b near q=2kF.
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the interaction. AE, however, only focused on the truly low-
energy terms with the running coupling, which should not
depend on the ratio b /f.

Vertices g1 and g2 in the g-ology model are related to the
spin and charge components of the backscattering amplitude

f��,����� = fc��������� + fs����� �� · �� ��, �3�

as fc���=2g2−g1 and fs���=−g1. Vertex g4 is related to the
forward scattering amplitude f�0� as g4= fc�0�=−fs�0�. For
generality, we extend the model from the SU�2� symmetric
to anisotropic case, i.e., assume that all three vertex functions
gi �i=1, 2, and 4� have different values gi	 and gi�, depend-
ing on whether the spins of the fermions in the initial state
are parallel or opposite. For the anisotropic case, the spin
component of the backscattering amplitude splits into the
longitudinal and transverse parts, and we have

fc��� = g2	 − g1	 + g2�,

fs	��� = g2	 − g1	 − g2�,
�4�

fs���� = − g1�.

The forward scattering vertex g4 is invariant under RG,
but the backscattering vertices g1 and g2 flow.18,24 Keeping
only the processes with momentum transfers in narrow win-
dows near either zero or 2kF �these windows are much

smaller than the cutoffs b and ̄b�, we have

dg1	

dL
= �1	,

dg1�

dL
= �1�,

�5�
dg2	

dL
= �2	,

dg2�

dL
= �2�,

where L=log EF /E, E is the running energy, and � functions
depend on the couplings g1	,� and g2	,�. In the one-loop
approximation,

�1	 = − �g1	
2 + g1�

2 �, �1� = − 2g1��g1	 − g2	 + g2�� ,

�6�
�2	 = − g1	

2 , �2� = − g1�
2 .

Reexpressing the couplings in terms of spin and charge com-
ponents of the backscattering amplitude, we find that the spin
amplitudes fs	

and fs� flow to zero under the RG transforma-
tion. The charge component of the backscattering amplitude
fc���= �g2	 +g2��−g1	, however, does not change under the
RG flow.

For the SU�2� symmetric case, �1=−2g1
2 / �1−g1�, �2

=�1 /2, and g1�L� renormalizes to zero as 1 /L, while g2�L�
tends to a constant value of half of the charge amplitude,
which is invariant under RG.

As we said earlier, the key interest of our analysis is to
understand at which order within the g-ology model the run-
ning couplings appear in the specific heat, and what are the
contributions to the specific heat which contain bare cou-
plings.

B. Results

We first catalog our main results, and then present calcu-
lations in the bulk of the paper. We computed C�T� in a
direct perturbation theory, expanding in powers of the cou-
plings gi to order g3. To first two orders in gi, we found that
the specific heat is expressed via bare couplings g2 and g4,
and the effective backscattering coupling g1. At third order,
we found an extra contribution to C�T�, which comes from
low energies and contains a cube of the running backscatter-
ing amplitude on the scale of T. Explicitly, for the aniso-
tropic case, we found for T�b and neglecting O�g3� con-
tributions with nonrunning couplings,

C�T� =
2�T

3vF

1 + �g̃1	 − g4	� + �g̃1	 − g4	�2 + g4�

2

+
1

2
��g2	

2 + g2�
2 � − 2g2	g̃1	 + �g̃1	

2 + g̃1�
2 ��

+ 3g̃1�
2 �T�g̃1	�T� + ¯ � . �7�

Here, g4 and g2 are the bare couplings, and g̃1	 and g̃1� are
the effective couplings on the scale b. The couplings g̃1	�T�
and g̃1��T� are running couplings on the scale of T—these
are the solutions of the full RG equations, Eq. �5�, with ef-
fective g̃1	 and g̃1� serving as inputs.

The effective couplings g̃1	 and g̃1� differ from bare g1	,�
due to random-phase approximation �RPA�-type renormal-
izations by 2kF particle-hole bubbles made of fermions with
momenta between b and f. This renormalization comes
from Fig. 2�a�. There are no such renormalizations for g2
couplings, which retain their bare values. We obtain

g̃1	 = g1	 − �g1	
2 + g1�

2 �Lb + �g1	
3 + 3g1	g1�

2 �Lb
2, �8a�

g̃1	
2 + g̃1�

2 = g1	
2 + g1�

2 − 2�g1	
3 + 3g1	g1�

2 �Lb, �8b�

where Lb=log�f /b�.

a) b) c) d)

FIG. 2. One-loop diagrams for the interaction vertices. In the
RG regime �external momenta are much smaller than b�, the
renormalizations of g1� and g1	 are given by diagrams �a�, �b�, and
�d�, while the renormalizations of g2� and g2	 are given by dia-
grams �c� and �d�. All diagrams give rise to log T terms. For exter-
nal momenta of order b, only diagram �a� gives rise to the loga-
rithmic term log�f /b�, as the two fermions in the particle-hole
bubble can have momenta in the whole range between b and f.
For all other diagrams, the interaction constraints the internal mo-
menta to be of the same order as the external momentum, and there
is no momentum space for the logarithm.
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We emphasize that a RPA-type renormalization is not
equivalent to RG, so that effective g̃1	 and g̃1� differ from
the solutions of Eqs. �5� and �6�. The difference is due to the
fact that in the one-loop RG equations, the RPA and ladder-
type renormalizations of g1, and the ladder renormalizations
of g2, are all coupled, while only the RPA diagrams lead to
Lb terms in the renormalization from g1 to g̃1.

Coupling between the RPA and ladder renormalizations in
the RG regime is absent for the isotropic, SU�2� symmetric
case. Then g̃1=g1 / �1+2g1Lb� becomes equivalent to one-
loop RG. Furthermore, in the symmetric case, the running
g1�L� at the lowest energies behaves in the one-loop approxi-
mation as g̃1 / �1+2g̃1L�. For the specific heat, we then obtain

C�T� =
2�T

3vF

1 + �g̃1 − g4� + �g̃1 − g4�2 + g4

2 + �g2 −
1

2
g̃1�2

+
3

4
g̃1

2 +
3g̃1

3

�1 + 2g̃1L�3� . �9�

The results of our direct perturbative analysis are in
agreement with the results for the Kondo problem12 and XXZ
spin chain13—for both models, the specific heat was shown
to behave as T / log3 T at the lowest temperatures. These two
models are argued to be in the same universality class as the
model of interacting electrons with the interaction in the spin
sector. The same behavior was found by Cardy22, and Lud-
wig and Cardy23 in their study of a conformally invariant
theory perturbed by the marginal perturbation from the fixed
point �the sine-Gordon model belongs to this class of theo-
ries�, and by AE in their multidimensional bosonization
analysis. In all these theories, the focus was on the universal
terms which are confined to low energies, i.e., are not
anomalies. If only such terms are included, the full spin con-
tribution to the specific heat scales as T / log3 T in the SU�2�
isotropic case, i.e., the spin part of the specific heat coeffi-
cient vanishes at T=0. Our direct perturbation theory repro-
duces the same universal behavior in the spin sector, but also
generates extra contributions to the specific heat which con-
tain effective interaction on the scale of b.

To make the comparison with the bosonization and sine-
Gordon model explicit, we rewrite our result via spin and
charge velocities vFu� and vFu� obtained by diagonalizing
the gradient part of the Hamiltonian:

u�
2 = �1 + g4	 + g4� − g1	�2 − �g2	 + g2� − g1	�2,

u�
2 = �1 + g4	 − g4� − g1	�2 − �g2	 − g2� − g1	�2. �10�

Using Eq. �10�, one can rewrite Eq. �7� as

C�T� =
�T

3vF
� 1

ũ�

+
1

ũ�
� +

�T

3vF
g̃1�

2 +
2�T

vF
g1�

2 �T�g1	�T� .

�11�

The last term in Eq. �11� is the universal contribution from
low energies. The first term is the sum of the specific heats of
two gases of free particles with the effective velocities ũ� and
ũ�, which are the same as in Eq. �10� except that g1	 and g1�

are now the effective, renormalized vertices. The term in the

middle is an additional contribution from the spin channel.
Very likely, this contribution can be absorbed into the renor-
malization of spin velocity ũ�→ ũ�− g̃1�

2 , i.e., the specific
heat can be reexpressed as the sum of the contribution with
running couplings, and the specific heat of two ideal gases of
fermions with bare charge velocity �albeit with g̃1�, and the
renormalized spin velocity.

In the rest of the paper, we present the details of our
calculations. In Sec. II B, we outline the computational pro-
cedure, calculate the first-order diagram for the thermody-
namic potential, and demonstrate explicitly the sensitivity of
the result for C�T� to the ratio of the cutoffs. In Secs. II C
and II D, we compute second- and third-order diagrams for
the thermodynamic potential, and discuss the fourth-order
result. In Sec. III, we analyze the specific heat in the frame-
work of the sine-Gordon model. Section IV presents the con-
clusions. Some technical details of the calculations are pre-
sented in the Appendixes.

II. PERTURBATION THEORY AND THE ROLE OF
CUTOFFS

A. Preliminaries

In this and the next two sections, we set vF=1. We restore
vF in the final formulas for the specific heat.

The specific heat of an interacting system of fermions can
be extracted from the thermodynamic potential � via C�T�
=−T�2� /�T2. The thermodynamic potential is given by the
Luttinger-Ward formula:

� = ��0� − 2T�
�
 dk

2�
log�G0G−1� − �G + �
�

1

2�
��G� ,

�12�

where

��0� = − 2T�
�
 dk

2�

1

2
log�
k

2 + �m
2 �� �13�

is the thermodynamic potential of the free Fermi gas per unit
length, G0= �i�m−
k�−1, 
k is the dispersion, G= �i�m−
k

+��−1, � is the exact �to all orders in the interaction� self-
energy, and �� is the skeleton self-energy of order �, evalu-
ated at finite T. The full self-energy is the sum over � of ��.
Expanding both G and �� in Eq. �11� in powers of the inter-
action, one generates a perturbative expansion for � in the
series of closed diagrams with no external legs.

The free-fermion expression for C�T� is obtained from
Eq. �13�. At low T, the momentum integration is confined to
k� �kF and yields

��0� = − T�
�m

��m� = −
�T2

3
+ const, �14�

such that C�0��T�=2�T /3.

B. First-order diagrams

At first order, the T dependence of � comes from the
bubble diagram crossed by the interaction line �diagram �1a�
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in Fig. 3�. This diagram contains two contributions: one with
a small momentum transfer and another with a momentum
transfer near 2kF. As spin is conserved along the bubble, the
corresponding coupling constants are g4	 and g1	, respec-
tively.

The safe way to evaluate the diagram is to sum over fre-
quencies first, as the frequency summation is constrained
neither by the interaction nor by the fermionic bandwidth,
and then integrate over the fermionic momentum k and
bosonic, transferred momentum q. We will measure q as a
deviation from zero for g4	 term, and from 2kF for g1	 term,

and, as we said, will cut interactions at �q � = ̄b for forward
scattering process and at b for backscattering process. We
linearize the fermionic dispersion near the Fermi surface and
set the cutoff of the integration over k at �k�q /2 � �f, f

�̄b ,b.
For small momentum transfer, we then obtain

�q=0
�1� =

2g4	

�


0

̄b
dq

0

f−q/2

dk

cosh
q

2T

cosh
q

2T
+ cosh

k

T

, �15�

and for the momentum transfer near 2kF, we obtain

�2kF

�1� =
2g1	

�


0

b

dq
0

f−q/2

dk

cosh
k

T

cosh
q

2T
+ cosh

k

T

. �16�

Subtracting T-independent terms in Eqs. �15� and �16�, and
introducing rescaled variables x=k /T and y=q / �2T�, we re-
write Eqs. �15� and �16� as

�q=0
�1� =

2g4	T2

�


0

̄b/2T
dy

0

�f/T�−y

dx
cosh y − cosh x

cosh y + cosh x

�17�

and

�2kF

�1� =
2g1	T2

�


0

b/2T

dy
0

�f/T�−y

dx
cosh x − cosh y

cosh x + cosh y
.

�18�

We immediately see that the first-order contribution to the
thermodynamic potential vanishes if we formally extend the
integrals over x and y to infinity. Integrals �17� and �18� are
similar to the integrals which give rise to anomalies in the

field theory.25 The integrands are odd under the interchange
of x and y; therefore, universal, cutoff-independent contribu-
tions apparently vanish, but the 2D integrals are ultraviolet
divergent if we set T to zero. A finite T then sets an ultravio-
let regularization of the divergent 2D integral and gives rise
to finite terms in � which do not explicitly depend on the
cutoffs. By analogy with the field theory, hereafter we refer
to these terms as “anomalies.”

For definiteness, we focus on the 2kF contribution. Since
f�b �in the sense of Eq. �2��, the integration over y ex-
tends to a much narrower range than that over x. In this
situation, the most natural way to evaluate the thermal part of
�2kF

�1� is to reexpress Eq. �18� as

�2kF

�1� = −
4

�
g1	T2

0

b/2T

dy cosh y
0

�f/T�−y dx

cosh x + cosh y
.

�19�

The integral over x now converges and, because f�b, we
can safely set the upper limit of the x integral to infinity. The
x integration then can be performed exactly and yields

�2kF

�1� = −
4

�
g1	T2

0

b/2T

dyy coth y ,

=−
g1	

2�
b

2 −
4g1	

�
T2

0

b/2T

dyy�coth y − 1� . �20�

The thermal part of �2kF

�1� comes from the second term

�2kF

�1� = const −
�

3
g1	T2. �21�

Observe that the T2 piece is independent of the cutoff. Fur-
thermore, in this computational procedure, the frequency
sums and the momentum integrals are fully ultraviolet con-
vergent, and Eq. �21� comes from small momenta k ,q�T
�f ,b.

Alternatively, however, we can evaluate the integrals in
Eq. �18� by integrating over the �dimensionless� bosonic mo-
mentum y first. To do this, we neglect y in the upper limit of
the integral over x �we will check a posteriori that this is
justified�, and reexpress Eq. �18� as

�2kF

�1� =
4g1	

�
T2

0

f/T

dx cosh x
0

b/2T dy

cosh x + cosh y
.

�22�

It is tempting to set the upper limit of the y integral to infin-
ity, as this integral converges. However, one has to be cau-
tious as there is a range of x where cosh x�cosh y for any y.
To see how this affects the result, we represent the y integral
as

1a) 1b)

FIG. 3. First-order diagrams for the thermodynamic potential.
Here and in the rest of the figures, the dashed line represents the
interaction. Diagram �1b� does not contribute to the temperature
dependence of the thermodynamic potential.
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0

b/2T dy

cosh x + cosh y

= 
0

� dy

cosh x + cosh y
− 

b/2T

� dy

cosh x + cosh y

=
x

sinh x
−

1

cosh x


�b/2T�

� dy

1 + ey−x . �23�

We replaced cosh x and cosh y in the last term by the expo-
nentials, as y are large, and we anticipate typical x to be large
as well. The remaining integration is straightforward, and we
obtain

�2kF

�1� = const +
�

3
g1	T2 −

4g1	

�
T2

0

f/T

dx log�1 + ex−b/2T� .

�24�

The first term is the contribution from low energies—the
same as in Eq. �21�, but with the opposite sign. The second
term, by construction, is the contribution from energies much
larger than T. Evaluating the second integral, we find that it
also contributes a T2 term to �2kF

�1� :

4g1	

�
T2

0

f/T

dx log�1 + ex−b/2T� = const +
2�

3
g1	T2.

�25�

The T2 term in Eq. �25� comes from x�b /2T. It is essential
that these x are smaller than the upper limit of x integration,
otherwise such a contribution would not exist. Substituting
this back into Eq. �24�, we find that the high-energy term is
opposite in sign and twice larger than the low-energy one, so
that the sum of the two contributions is given precisely by
Eq. �21�. Going back through the derivation of Eq. �25�, we
see that typical y and x are near b /2T, well below the upper
limit of the x integration. In this situation, the neglect of y in
the upper limit of the integral over x is legitimate, to accu-
racy exp−b /T.

We see, therefore, that �2kF

�1� can be equally well obtained
either as a low-energy contribution or as a high-energy one.
This is a hallmark of an anomaly. The same is true also for
the forward scattering term �q=0

�1� : the T2 term can be equally
obtained as a low-energy contribution or as a contribution

from energies of order ̄b.
Combining the results for backscattering and forward

scattering, we obtain for the specific heat

C�1��T� =
2�T

3vF
�g1	 − g4	� . �26�

As we said in the Introduction, the g1	 term in Eq. �26� is
not present in the standard bosonization approach.11 The ar-
gument was that the g1	 should only appear in C�T� in the
combination g1	 −g2	 as the two vertices transform into each
other by interchanging external momenta without inter-
changing spins and, therefore, are physically
indistinguishable.26,27 The first-order diagram with g2	 is a
Hartree diagram with two bubbles connected by the interac-

tion at exactly zero transferred momentum �diagram �1b� in
Fig. 3�. As each of these two bubbles represents a total elec-
tron density, this diagram obviously does not depend on T.
By the argument above, the diagram with g1	 also should not
depend on T. This consideration is, however, only valid if the
cutoffs are infinite. For finite cutoffs, there is an extra
“anomaly-type” contribution, in which g1	 appears in combi-
nation with g4	, as we have just demonstrated.28 A similar
reasoning within real-space consideration has been presented
in Ref. 29. Another argument for the presence of the g1	 term
is based on the observation that fermions with the same spin
do not interact via a contact interaction; hence, the interac-
tion should drop out of the results in this limit. This implies
that the observables, such as C�T�, must depend separately
on the combinations g4	 −g1	 and g2	 −g1	.30,31 Equation �26�
is consistent with this argument as the limit of a contact
interaction, i.e., for g1	 =g4	, C�1��T� vanishes.

The interplay between low-energy and high-energy con-
tributions to � can also be understood if one interchanges
one momentum integration and one frequency summation,
and expresses ��1� via the polarization bubble as

�q=0
�1� = − g4	T�

�
 dq�q=0�q,�� ,

�2kF

�1� = − g1	T�
�


−b

b

dq�2kF
�q,�� . �27�

The subindices indicate that the momentum integration is
confined to q near zero or near 2kF.

For briefness, we consider only the backscattering term.
The polarization bubble �2kF

�q ,�� is given by

�2kF
�q,�� � 2T�

�
 dk

2�
GR�� + �,k + q�GL��,k�

+ GL�� + �,k + q�GR��,k� �28a�

=
1

2�
log
�2 + q2

4 f
2 − 8

0

�

dkknF�k�

�� 1

�q − i��2 − 4k2 +
1

�q + i��2 − 4k2�� , �28b�

where GL,R�k�� is the Green’s function of right/left moving
fermions and nF�x� is the Fermi function. The first term in
Eq. �28b� is the zero-temperature Kohn anomaly, the rest is
the thermal contribution. The integration over k gives the
result for ��q ,�� in terms of di-gamma functions,32 but for
our purposes, it is more convenient to use Eq. �28b�.

Substituting Eq. �28b� into Eq. �27�, we find

�2kF

�1� = − g1	�Q + P� , �29�

where Q and P are the contributions from the Kohn anomaly
and from the thermal piece in Eq. �28b�, respectively. The
temperature-dependent part of the Q term is
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Q =
1

2�
T�

�


−b

b

dq log
�2 + q2

4 f
2 , �30�

and it comes from low energies regardless of whether the
sum or the integral is done first. In both cases, we get, up to
a constant,

Q = QL = − �T2/3, �31�

where subindex L specifies that this is a contribution from
low energies: �, q�T. The second, thermal, term is deter-
mined either by low or by high energies, depending on the
order. If the momentum integration is done first, the nonzero
result is obtained only because b is finite; otherwise, the
integration contour can be closed in that half-plane where the
integrand has no poles. Rearranging the integrals, we rewrite
this contribution as

P = −
4

�
T�

�


−b

b

dq
0

�

dkknF�k�

�� 1

�q − i��2 − 4k2 +
1

�q + i��2 − 4k2� ,

=
8

�
T�

�

b

�

dq
0

�

dkknF�k�

�� 1

�q − i��2 − 4k2 +
1

�q + i��2 − 4k2� . �32�

As the Fermi function in Eq. �28b� confines the fermionic
momentum to k�T, and q�b is large, we can neglect 4k2

compared to �q� i��2 in the denominator. This simplifies P
to

P =
2�T2

3
T�

�

b

�

dq� 1

�q − i��2 +
1

�q + i��2� . �33�

Performing the momentum integration, we obtain

P =
4�T2

3
T�

�

b

b
2 + �2 . �34�

Evaluating the integral, we find that P does not depend on
the cutoff, and is equal to

P = PH =
2�T2

3
, �35�

where subindex H specifies that this is a contribution from
high energies �, q�b.

Alternatively, P can be evaluated by doing frequency
summation first. One can easily check that, to order T2, the
frequency sum can be replaced by the integral. The fre-
quency integral is nonzero only for q�2k, otherwise the
poles in � are located in the same half-plane and the fre-
quency integral vanishes. Evaluating the frequency integral
and then the integral over q, we reduce P to

P = PL =
8

�


0

�

dkknF�k� =
2�T2

3
, �36�

where subindex L specifies that this a contribution from low
energies ��T. We see that PH= PL, i.e., the same result for
P can be obtained either as a high-energy contribution or as
a low-energy one. In both cases, P is formally independent
of the cutoff, and the total backscattering part of ��1� is given
by

�2kF

�1� = const − g1	�Q + P� = const −
g1	�

3
T2, �37�

which coincides with Eq, �21�.
Which of the two ways �low energy or high energy� is

physically correct? As we discussed in the Introduction, if
�2kF

�1� comes from low energies �of order T�, one should ex-
pect T log T terms in C�T� already at the next �second� order;
on the contrary, if it comes from high energies, no such terms
are expected. AE suggested implicitly that the correct proce-
dure is to take the average of two possible orderings, i.e., to
represent frequency summation and momentum integration
in Eq. �27� as

1

2�T�
�
 dq + dqT�

�
� . �38�

In this procedure, P in Eq. �32� is a sum:

P =
1

2
PL +

1

2
PH, �39�

with PH= PL=�T2 /3. Total �2kF

�1� is the sum of P and Q �see
Eq. �37��, where Q=QL=−�T2 /3 comes from low energies.
Adding P and Q, we find that the low-energy contributions
cancel out, and the net result for �2kF

�1� is the high-energy
contribution.

Equation �38�, however, contains some ambiguity, as one
could equally well can rewrite P as �PL+ �1−��PH with an
arbitrary coefficient �. Then, the balance between the low-
and high-energy contributions to ��1� would depend on �.
Whether ��1� contains running or bare coupling g1	 can only
be established by an explicit computation to the next �sec-
ond� order. This is what we will do in the next section.

C. Second-order diagrams

The second-order diagrams for the thermodynamic poten-
tial are shown in Fig. 4. There are two different types of

2b) 2c)2a)

FIG. 4. Second-order diagrams for the thermodynamic
potential.
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diagrams, obtained by inserting either self-energy corrections
or vertex corrections into the first-order diagram. The dia-
gram with self-energy insertions �diagram �2a�� is readily
computed either explicitly or by evaluating first-order self-
energy and substituting the result into the first-order diagram.
We will not discuss computational steps �they are not quali-
tatively different from those to first order� and present only
the final result: diagram �2a� yields a regular T2 contribution
to � of the form

�2a
�2� = −

1

3�
T2�g1	 − g4	�2. �40�

Next, there are vertex correction diagrams �2b� and �2c�,
which involve the forward scattering vertex g4 �small trans-
ferred momentum and 2kF total incoming momentum� and g2
vertex �small transferred and small total incoming momen-
tum�. The contributions of order g4	

2 , g4�
2 , g2	

2 , and g2�
2 , and

also of order g2	g1	, are all expressed via the bilinear combi-
nations of the bubbles for right and left movers

�L,R�q,�� � T�
�
 dk

2�
GR,L�k + q,� + ��GR,L�k,��

= �
1

2�

q

ı�� q
, �41�

whose sum is the total polarization bubble �q=0�q ,��
=�R�q ,��+�L�q ,��. The evaluation of
T���dq�i�q ,��� j�q ,�� �i , j=L ,R� is straightforward, and
the result does not depend on the order of momentum and
frequency integrations. We have, up to T-independent terms,

T�
�
 dq��L

2�q,�� + �R
2�q,���

= −
1

�2T�
�
 dq

�2

�2 + q2

= −
1

�
T�

�

��� = const +
T2

3
,

T�
�
 dq�L�q,���R�q,�� = −

1

4�2T�
�
 dq

�2

�2 + q2

= const +
T2

12
. �42�

These expressions give rise only to regular T2 terms in the
thermodynamic potential and, consequently, to T terms in the
specific heat. Collecting combinatorial factors, we find that
the contribution from g4	

2 cancels out among diagrams �2b�
and �2c�, while the rest yields

�reg
�2� = −

1

3�
T2
g4�

2 +
1

2
�g2	

2 + g2�
2 � − g2	g1	� . �43�

Nontrivial second-order contributions are associated with
the vertex corrections due to backscattering amplitude in dia-
gram �2b�. These are most easily expressed via the square of
the 2kF polarization bubble as

�2kF

�2� = −
�

2
T�

�
 dq�g1	

2 + g1�
2 ��2kF

2 �q,�� . �44�

The evaluation of T���dq�2kF

2 �q ,��, presented in Appen-
dix A, gives

T�
�
 dq�2kF

2 �q,�� =
T2

3
�1 − 2Lb� , �45�

where, we remind, Lb=log�f /b�. Combining Eqs. �44� and
�45�, we obtain

�2kF

�2� = −
�T2

6
�g1	

2 + g1�
2 ��1 − 2Lb� . �46�

The logarithmic term in Eq. �46� is the contribution from
the RPA diagram with fermions with energies between b
and f. One can easily verify that it coincides with first-order
logarithmic renormalization of g1	, which also comes from
the diagram 2b. Indeed, according to Eq. �8a�, the effective
coupling g̃1	 on the scale b is, to order g2,

g̃1	 = g1	 − �g1	
2 + g1�

2 �Lb. �47�

This is precisely what one obtains by combining �2kF

�1� from

Eq. �37� and the logarithmic term in �2kF

�2� . We see that at low
T, the effective g̃1	 is the renormalized coupling on the scale
of b rather than on the scale of T. This implies that the
correct way to interpret the anomaly in �2kF

�1� is to treat it as a
purely high-energy contribution. This agrees with the “sym-
metrized” procedure of Eq. �38�.

We also emphasize that the nonlogarithmic term in �2kF

�2� is
independent of the ratio of the fermionic and bosonic cutoffs.
Another way to see this is to adopt a different computational
procedure for the backscattering part of diagram �2b�.
Namely, by virtue of 2kF scattering, two pairs of fermions
from different bubbles have nearly equal momenta. Combin-
ing these two pairs into two bubbles with small momentum
transfers and integrating independently over the two running
momenta in these two new bubbles, one can reexpress the g1

2

contribution via the product of two polarization bubbles with
small momentum transfers. This procedure was employed in
earlier work for D�1,6 and by AE for one dimension. It is
justified, however, only when the momentum dependence of
the interaction is weak up to the fermionic cutoff, i.e., in a
formal limit when b	f �which is opposite to what we
assume here�. Applying this procedure, one can reexpress
�2kF

�2� as

��2��2kF� = − 2��g1	
2 + g1�

2 �T�
�
 dq�L�q,���R�q,��

= −
�T2

6
�g1	

2 + g1�
2 � . �48�

This agrees with Eq. �46� without the logarithmic term.
Combining the contributions to ��2� from Eqs. �40�, �43�,

and �45�, we obtain for the second-order specific heat
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C�2��T� = −
2�T

3vF
�g1	

2 + g1�
2 �Lb +

2�T

3vF
��g1	 − g4	�2 + g4�

2 �

+
�T

3vF
��g2	 − g1	�2 + g2�

2 + g1�
2 � . �49�

Note that the bilinear combination of g2 and g1 in the last
term of Eq. �49� is precisely the same combination of the
backscattering amplitudes as for the nonanalytic term in
C�T� in higher dimensions �cf. Eq. �1��:

�g2	 − g1	�2 + g2�
2 + g1�

2 =
1

2
�fc

2��� + fs	
2 ��� + 2fs�

2 ���� .

�50�

We see that, besides the logarithmic term which trans-
forms g1	 into g̃1	, the specific heat C�2��T� also contains the
“universal” second-order terms that do not depend on the
cutoffs. This poses the same question as before—are those
couplings the running ones �on the scale of T� or the bare
ones �on the scale of a cutoff�? On one hand, the combina-
tion of the second-order g2 and g1 terms in C�2��T� is the sum
of the squares of charge and spin components of the back-
scattering amplitude �Eq. �50��. As the spin amplitude flows
under RG and acquires log T corrections, one could expect
T log T terms at the next, third order. On the other hand, all
constant terms in C�2��T� can be formally represented as non-
logarithmic renormalizations of g1	 and g4	. This renormal-
ization involves the static bubble �q=0�q ,�=0�
=T���dkG�k ,��G�k+q ,��, which is an anomaly by
itself—it can be viewed as coming from low energies, of
order q, if we sum over � first, or from high energies, of
order f, if we integrate over k first. It is then unclear a
priori whether the scattering amplitudes in C�2��T� are the
amplitudes on the scale of order T or on the scale of the
cutoff. To verify this, we need to compute explicitly third-
order diagrams.

D. Third-order diagrams and beyond

1. Third-order diagrams

We analyze the third-order diagrams in two steps. At the
first step, we analyze possible logarithmic terms in � at third
order, searching for log T terms and also for terms which
contain log�f /b�. We will show that there are no log T
terms at third order, whereas all log�f /b� can be ac-
counted for by renormalizations of the g1	,� vertices. At the
second step, we will show that there exists a universal third-
order term which starts to flow at the next, fourth order.

a. Logarithmic contributions. Diagrams that potentially
contain logarithmic contributions are shown in Fig. 5. Dia-
gram �3a� is expressed via the cube of the polarization
bubble at 2kF:

�3a
�3� = −

�2

3
�g1	

3 + 3g1	g1�
2 �T�

�
 dq�2kF

3 �q,�� . �51�

The computation of T���dq�2kF

3 �q ,�� is lengthy, and we
present it in Appendix B. The result is

T�
�
 dq�2kF

3 �q,�� =
T2

�
�Lb

2 − Lb� , �52�

where, we remind, Lb=log�f /b�. All potential log2 T and
log T terms cancel out, and the only logarithmic dependence
left involves the ratio of the cutoffs. Substituting Eq. �52�
into Eq. �51�, we obtain

�3a
�3� = −

�T2

3
�g1	

3 + 3g1	g1�
2 ��Lb

2 − Lb� . �53�

Diagram �3b� is a vertex renormalization of the second-
order diagram �2a� in Fig. 4. The vertices in diagram �2a� can
be both g1 or one of them can be g1 and the other one g4. The
2kF bubble in diagram �3b� of Fig. 5 is inserted into the g1
line in both cases. The total result for diagram �3b� is

�3b
�3� =

2�T2

3
�g1	 − g4	��g1	

2 + g1�
2 �Lb. �54�

Diagram �3c� in Fig. 5 is a vertex renormalization of the
second-order diagram �2c� in Fig. 4. One of the lines of the
second-order diagram is g1 and the other one is g2. Inserting
the 2kF bubble into the g1 line, we obtain for diagram �3c�

�3c
�3� = −

�T2

3
g2	�g1	

2 + g1�
2 �Lb. �55�

Note that only 2kF couplings in C�T� are renormalized. The
g2 coupling in C�T� remains at its bare value. A renormaliza-
tion of g2 could potentially come from diagram �3d�, but this
diagram contains no Lb terms because all internal momenta
in this diagram cannot deviate from external momenta by
more than b, i.e., there is no space for the logarithm in
momentum integrals.33 Therefore, the logarithmic part of the
third-order specific heat is obtained by combining the results
from Eqs. �53�–�55�:

3a)

k+q

p

p+q

k+qk
2

2p+q

1

1

3d)

3b)

3c)

FIG. 5. Third-order diagrams that potentially give logarithmic
contributions. In diagram �3a�, momenta k and p are counted from
�kF, respectively.
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C�3��T� =
2�T

3
Lb

2�g1	
3 + 3g1	g1�

2 � −
2�T

3
Lb

�
g1	
3 + 3g1	g1�

2 + 2�g1	 − g4	 −
1

2
g2	��g1	

2 + g1�
2 �� .

�56�

One can easily verify that this C�3��T� is fully absorbed into
first and second order expressions for C�T� if one replaces
the bare couplings g1	,� by their renormalized values g̃1	,� as
in Eqs. �8a� and �8b�. In particular, the Lb

2 term in Eq. �56�
accounts for the second-order ladder renormalization of g1	 �
g1	→ �g1	

3 +3g1�
2 g1	�Lb

2, see Eq. �8a�� in the first-order spe-
cific heat �Eq. �26��. The Lb terms account for the renormal-
izations of the g1	, g1	

2 , and g1	
2 +g1�

2 terms in C�2��T� �Eq.
�26�� according to

g1	 → − �g1	
2 + g1�

2 �Lb,

g1	
2 → − 2g1	�g1	

2 + g1�
2 �Lb,

g1	
2 + g1�

2 → − 2�g1	
3 + 3g1	g1�

2 �Lb,

�see Eqs. �8a� and �8b��.
b. Universal contributions. To this end, we have not ob-

tained a term with the running coupling on the scale of T. We
now demonstrate how such a term is generated at third order.
To do this, we compute the constant, cutoff-independent term
in ��3�. We will not attempt to calculate this term using Eq.
�51�, as the calculations are quite involved. Rather, we as-
sume, by analogy with the second-order calculation, that this
constant term is independent of the ratio of the cutoffs and
can be evaluated in the same computational procedure as the
one that led us to Eq. �48�, i.e., by reducing the 2kF problem
to the small q one and representing the third-order diagrams
as the products of two triads. The same procedure was em-
ployed by AE.

The relevant diagrams here are diagrams �3a� and �3d�.
Using the triad method, we obtain for their sum

�sum
�3� = �3a

�3� + �3d
�3�

= −
4

�
g1	g1�

2 T�
�1

T�
�2

 dq1 dq2�3�q1,q2,�1,�2��3

��− q1,− q2,�1,�2� , �57�

where

�3�q1,q2,�1,�2� = T�
�k

 dkGR�k,�k�GR

��k + q1,�k + �1�GR�k + q2,�k + �2� ,

�3�− q1,− q2,�1,�2� = T�
�p

 dipGL�p,�p�GL�p + q1,�p

+ �1�GL�p + q2,�p + �2� . �58�

The integration in Eq. �58� is straightforward, as all integrals
converge, and we have

�3�q1,q2,�1,�2� =
1

2�
� i�2 + q2

i�2 − q2
−

i�1 + q1

i�1 − q1
�

�
1

i��1 + �2� − �q1 + g2�
. �59�

Substituting into Eq. �57�, we obtain

�sum
�3� =

1

�
g1	g1�

2  dq1 dq2T�
�1

T�
�2

�� �2

i�2 − q2
−

�1

i�1 − q1
�� �2

i�2 + q2
−

�1

i�1 + q1
�

�
1

i��1 + �2� − �q1 + q2�
1

i��1 + �2� + �q1 + q2�
.

�60�

The computation of the double momentum integral and fre-
quency sum requires special care. The most straightforward
way is to sum over frequencies first, as the frequency sums
are not restricted by cutoffs. Performing the summation, and
using the symmetry between q1 and q2, we find after some
algebra

�sum
�3� =

1

�
g1	g1�

2 
−f

f

dq1
−f

f

dq2�1

4
� . �61�

This obviously implies that the momentum integral is con-
fined to high energies, of order f, and �a

�3� does not contain
a T2 term.

However, this is not the whole story. The new understand-
ing is obtained if we perform computations in different order,
by integrating over momentum first. The computation is
again lengthy, but straightforward, and yields

�sum
�3� = �g1	g1�

2 T�
�1

T�
�2

�1 − ��1,0��2,0�F��1,�2,f� ,

�62�

where �a,b is the Kronecker symbol, and F��1 ,�2 ,f� ap-
proaches a constant �=1� when frequencies are much smaller
than the fermionic cutoff f. At frequencies comparable and
larger than the cutoff, F is rather complex, but the part of F
relevant for our purposes is

F��1,�2,f� = 1 −
3

�

��1�

f

�2
2 + f

2 + ��2�
f

�1
2 + f

2� .

�63�

There are other terms in F, but they do not lead to a T2 term
in �sum

�3� .
The double frequency sum in Eq. �62� then reduces to

T�
�1

T�
�2


1 −
6

�
��1�

f

�2
2 + f

2� − T2, �64�

where the summation is now over all Matsubara frequencies,
including �1 ,�2=0 �we used the symmetry between �1 and
�2�. The sum T��1

T��2
1 is confined to large frequencies,

and does not lead to T2 term in �a
�3�. If f were infinite, −T2
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would be the only outcome of Eq. �64�. For finite f, one has
to be careful as the second term in Eq. �64� cannot be ne-
glected for �2�f. Replacing the sum over �2 by the inte-
gral, we obtain that the contribution from the second term in
Eq. �64� reduces to −�3 /��T��1

��1�=const+T2. Adding this
result and the −T2 term in Eq. �64�, we find that the T2 term
in �a

�3� vanishes. This agrees with Eq. �61�. However, we
now see that the vanishing of the T2 term in �a

�3� is the result
of a cancellation between two physically different contribu-
tions. The −T2 term in Eq. �64� is a truly low-energy contri-
bution, which survives even if we set f=�. This T2 term
comes from �1=�2=0, and from vanishingly small q1 and
q2 in the momentum integrand. A very similar term leads to
a nonanalyticity in the spin susceptibility.4 The coupling for
this term, g1�

2 g1	, is then at the low-energy scale ��T�, and
should be fully renormalized within RG. On the other hand,
the compensating T2 term comes from large energies, of or-
der f, and is, therefore, a high-energy contribution. The
corresponding coupling is then at the high-energy scale, and
it should remain constant under the RG transformation.

As a result, �sum
�3� becomes

�sum
�3� = − �T2�g1�

2 �LT�g1	�LT� − g1�
2 g1	� , �65�

where g1�LT� is the 2kF coupling on the scale of T, and g1

without argument is the coupling at the cutoff scale.
The low-energy contribution in Eq. �65� coincides with

the result obtained by AE �modulo a factor of 2�. AE did not
evaluate the high-energy contribution in Eq. �65�. We did not
attempt to obtain �a

�3� for an arbitrary ratio of b and f. We
expect that the low-energy contribution is independent of the
ratio of the cutoffs. At the same time, the high-energy term in
Eq. �65� may depend on the ratio of the cutoffs, i.e., the �
−1� factor between low-energy and high-energy contribu-
tions in Eq. �65� may only hold for b�f, when the “triad”
calculation is valid. In any event, the high-energy term in Eq.
�65� is a regular T2 term and is, therefore, of little interest.

For completeness, we also note that there exists another
high-energy contribution of order g1�

2 g1	, obtained by insert-
ing the first-order renormalization of the Fermi velocity into
the second-order backscattering diagram. This contribution
can be easily evaluated in the same way as Eq. �65� and
yields

�extra
�3� = − �T2g1�

2 g1	 . �66�

If Eq. �65� is independent of the ratio of the cutoffs, the
high-energy terms in Eqs. �65� and �66� cancel each other,
i.e., the net result is only low-energy contribution. This can-
cellation is likely accidental, however.

Assembling logarithmic and universal constant term at
third order, evaluating the specific heat, combining with first-
and second-order diagrams, and using the RG flow of the
couplings, we obtain the full result for the specific heat C�T�,
Eqs. �7� and �9�.

2. Fourth-order diagrams

For completeness, we also computed explicitly the fourth-
order, four-bubble backscattering diagram for the thermody-
namic potential. We, indeed, found a T2 log T term obtained

by combining the “zero-energy” contribution to �sum
�3� �Eq.

�65�� with an additional polarization bubble �2kF
�0,0�

� log T. This one accounts for the log T renormalization of
the running couplings g1��LT� and g1	�LT� in Eq. �65�. We
searched for possible other T2 log T contributions, using the
same method as that at the end of the previous section.
Namely, we assumed that T2 log T terms must be indepen-
dent of the cutoff ratio, set b�f, and created two “quater-
nions” by assembling four fermionic propagators with close
momenta k�kF, k+q1, k+q2, k+q3, and p�−kF, p+q1, p
+q2, p+q3, �q�i�kF �see Fig. 6�. We integrated indepen-
dently over k and p in infinite limits �we recall that this is
possible only if the cutoff imposed by the interaction is ir-
relevant�, then integrated over qi and summed over corre-
sponding frequencies. We found T2 log T terms from particu-
lar regions of frequency summations and integrations over
three bosonic momenta q1, q2, and q3; however, all such
T2 log T terms cancel out. Therefore, the only nonvanishing
T2 log T contribution at fourth order is the zero-energy one.
All T2 terms in � up to fourth order are anomalies, and
corresponding couplings are at energies O��.

III. COMPARISON TO THE SINE-GORDON MODEL

A. Model

A well-established way to treat the system of 1D fermions
is bosonization, which allows one to map the original prob-
lem onto the quantum sine-Gordon model. It is instructive to
see how the results of the previous sections can be obtained
within this model. We bosonize the operators of right- and
left-moving fermions, R� and L�, in a standard way

R��x�,L��x� =
1

�2�a
exp��i����x� � ���x���, � = ↑,↓ ,

where a is a short-distance cutoff related to the momentum
cutoff introduced in the previous sections via a=f

−1. Upon
bosonization, the part of the fermionic Hamiltonian param-
etrized by couplings g4 and g2 is mapped onto the Gaussian
part of the bosonic Hamiltonian, HG=HG

���+HG
���, where

FIG. 6. Fourth-order diagram with four bubbles.
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HG
��,�� =

1

2
 dx�1 + g4	 � g4� + g2	 � g2����x��,��2

+ �1 + g4	 � g4� − g2	 � g2����x��,��2, �67�

and the charge and spin bosons are defined as ��,�
= ��↑��↓� /�2 and ��,�= ��↑��↓� /�2. The 2kF scattering,
however, leads to nonlinear, cosine terms in the bosonic
Hamiltonian. For a local, delta-function interaction, the co-
sine term only comes from 2kF scattering of fermions with
opposite spins �coupling g1��. However, for an arbitrary,
nonlocal interaction, there is also a cosine term which comes
from 2kF scattering of fermions with parallel spins �coupling
g1	�. Introducing a finite-range interaction V12�V�x1−x2�,
we map the 2kF part of the fermionic Hamiltonian onto

H1	,� =
2

�2�a�2   dx1dx2V12 cos��2�����x1� − ���x2��

+ 2kF�x1 − x2��cos��2�����x1� ����x2��� . �68�

For a local interaction, V12=V0��x1−x2�, Eq. �68� reduces to
the usual sine-Gordon model.

The universal g1
3 term in the thermodynamic potential �the

analog of the universal term in Eq. �65� for the SU�2� sym-
metric case� was obtained by Cardy22 and Ludwing and
Cardy23 for a general case of a conformal theory perturbed
about a fixed point by a marginally irrelevant operator, and
we just refer the reader to that work. The first- and second-
order terms in g1, however, have not been obtained explicitly
in the sine-Gordon model before. Our goal is to demonstrate
how the anomalous terms of order g1 and g1

2 appear in the
thermodynamic potential, and, in particular, how the g1 cou-
pling gets a logarithmic renormalization on a scale of the
bosonic cutoff in this model. We will see that to get this
renormalization, and also to obtain g1

2 term with a correct
prefactor, one must consider a finite-range interaction and
keep the range of the interaction larger than the short-
distance cutoff of the theory.

The thermodynamic potential per unit length is given by

� = −
T

L
log  D� exp�− �SG + S1	 + S1��� , �69�

where Sa, with a=G ,1	, and 1�, are the actions correspond-
ing to the Gaussian and 2kF parts of the bosonic Hamil-
tonian, respectively. Expansion in S1	 +S1� generates pertur-
bation series for �. In the absence of backscattering �g1

=0�, the bosons are free and theory is exactly solvable for
arbitrary g2 and g4. One can then construct the perturbation
theory in g1	 and g1� about the free-boson point. To make a
connection with the previous sections, however, we will per-
form the perturbative expansion in all coupling constants
rather than only in g1. This means that the averages gener-
ated by an expansion in S1	 and S1� will be calculated over a
free Gaussian action, Eq. �67� with g4=g2=0.

B. First order

The first-order term is obtained by expanding the expo-
nential in Eq. �69� to first order in S1	. Performing the aver-
aging, we obtain

��1	� = 2
�x��a

dxV�x�A��x,0�A��x,0�cos�2kFx� , �70�

where

A�,��x,�� =
1

�a
�ei�2����,��x,��−��,��0,0��� . �71�

As the averages are calculated over a free Gaussian action,
A� and A� are equal to each other and given by11

A��x,�� = A��x,�� = 
1

4

T2

sinh2 �xT + sin2 ��T
�1/2

. �72�

The 2kF polarization bubble in the x ,� space is

�2kF
�x,�� = − A�,�

2 �x,�� = −
1

4

T2

sinh2 �xT + sin2 ��T
.

�73�

Therefore, the first-order result reduces to

��1	� = − 2 dxV�x��2kF
�x,0�cos�2kFx� . �74�

Note that this is nothing more than the first-order diagram
�1a� in Fig. 3, written in the x ,� space. Expanding �2kF

�x ,0�
for x�T−1, we obtain

�2kF
�x,0� = −

T2

4 sinh2 �xT
= −

1

4�2x2 +
1

12
+ ¯ . �75�

The universal, constant term in �2kF
�x ,0� gives a

T-dependent part of �2kF

�1� :

��1	� = const −
�

3
g1	T2, �76�

where g1	 = �1 /2���dxV�x�cos�2kFx�. We see that the
bosonization result �Eq. �76�� agrees with the diagrammatic
one �Eq. �21�� obtained for b�f. This last condition is
implicit in bosonization, as Eq. �73� is valid only if the fer-
mionic cutoff exceeds the bosonic one. Notice that the final
result Eq. �76� is formally valid also for a local interaction.
However, the limit of a local interaction cannot be taken at
the very beginning. Indeed, in this limit, S1	 reduces to a
constant and does not contribute to the T dependence of �.

Gaussian form of H1¸

The g1	 term in the specific heat can also be obtained by
reducing H1	 in Eq. �68� to the Gaussian form, similar to
what was done in Ref. 29 for spinless fermions. For com-
pleteness, we repeat this derivation here for fermions with
spin. Indeed, H1	 can be written as the convolution of the 2kF
components of the density

H1	 =
1

2 �
�=↑,↓

 dx1 dx2V12�2kF,��x1��2kF,��x2� , �77�

where �2kF,��x�=R��x�L�
†�x�e2ikFx+H.c.= �e2i�����x�e2ikFx

+H.c.� /2�a. Performing normal ordering in the product of
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two exponentials of the bosonic field and Taylor expanding
the difference ���x1�−���x2� under the normal-ordering
sign, one obtains

e2i�����x1�e−2i�����x1�
¬ e2i������x1�−���x2��:exp�− 4������x1�

− ���x2��2�� ¬ 1 − 2���x���2�x1 − x2�2 + ¯ :
a2

�x1 − x2�2

= c − number − 2�a2��x���2.

At the level of operators, H1	 then reduces to

H1	 = − g1	�
�
 dx��x���2.

Combining this result with the Gaussian part of the Hamil-
tonian, we obtain a new effective Hamiltonian

HG
* =

1

2 �
�=�,�


x

�u�/K����x���2 + �u�K����x���2,

where the charge and spin velocities are the same as in Eq.
�10� and

K�,� = � 1 + g4	 � g4� − g2	 � g2�

1 + g4	 � g4� + g2	 � g2� − 2g1	
�1/2

. �78�

The specific heat, corresponding to HG
*, is given by the first

term in Eq. �11�. Notice that, in contrast to conventional
bosonization which treats the g1	 interaction only as an ex-
change process to the g2	 interaction and, therefore, contains
only a combination of g2	 −g1	, the parameter K�,� in Eq. �78�
contain two combinations: g2	 −g1	 and g4	 −g1	.

C. Second order

We next demonstrate how the renormalization of g1	 oc-
curs in the bosonic language, and how the universal term in
� with g1�

2 emerges within the sine-Gordon model. Expand-
ing Eq. �69� to order S1�

2 and performing the averaging, we
obtain the second-order piece in �:

��2� = − dx1 dx2 dx3V13V23 cos�2kF�x1

− x2��J��x1,x2� , �79�

where

J��x,x�� = 
0

1/T

d��2kF
�x,���2kF

�x�,�� , �80�

and all spatial integrals are cut at small distances by a.
Again, this is nothing more than the two-bubble diagram
�2b� in Fig. 4, written in the x ,� space. The integration over
� is readily performed

J��x,x�� =
T3

4

coth��T��x� + �x����
sinh�2�T�x��sinh�2�T�x���

.

There are two contributions to the T2 term in ��2�: one comes
from large distances �x���x���T−1 and another one comes
from distances of the order of the interaction range. For the

first contribution, the requirement that the potential must
have a finite range is irrelevant, and the interaction in Eq.
�79� can be safely replaced by the delta-function V�x�
=2�g1���x�. We then obtain

�a
�2� = − 2�2g1�

2 T3
a

�

dx
coth�2�Tx�
sinh2�2�Tx�

= −
�

2
g1�

2 T2

sinh2�2�Ta�
. �81�

Expanding the last result for Ta�1, we obtain

�a
�2� = const +

�

6
g1�

2 T2. �82�

This contribution is of the same magnitude but opposite in
sign to the cutoff-independent part of � in Eq. �46�. As the
second contribution is expected to come from distances
smaller than T−1, we expand Eq. �80� for T→0 and keep
only the T-dependent term

J��x,x�� = −
T2

48�

��x� − �x���2

�x��x����x� + �x���
.

Introducing new variables  =x−x� and != �x+x�� /2 and
performing elementary integrations, the resulting contribu-
tion to � can be represented as a sum of two terms

�b
�2� = �+ + �−,

�+ =
T2

12�


2a

�

d!W�!�cos�2kF!�F+�!� ,

�− =
T2

12�


0

�

d W� �cos�2kF �F−� � , �83�

where

F+�!� = log
! − a

a
− 2 + 4

!

a
, F−� � = log

� /2 + a�
a� + a�

,

�84�

and W�x�=�dyV�x+y�V�y�. The universal, cutoff-
independent part of �b

�2�� comes from the constant term
�−2� in the function F+�!�. It is of the opposite sign and
twice larger than the contribution in Eq. �82�. Combining
these two contributions together, we obtain for the universal
part of �

�univ
�2� = −

�

6
g1�

2 T2.

The remainder of � is a cutoff-dependent part. To calcu-
late this part, we consider two model interactions. The first
one is consistent with the assumption used in the previous
sections �and also in g-ology, in general� that the backscatter-
ing part of the interaction is peaked near 2kF, i.e., the inter-
action oscillates in real space with period � /kF. A model
which describes this behavior is
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V�x� = g1�

2b

x2 + b2 cos�2kFx� .

The scale b is equal to the bosonic cutoff b
−1 introduced

earlier. The assumption b�f corresponds to the condition
b	a. Expanding functions F� for  ,!	a and neglecting
the exponentially small terms �of order exp�−2kFb�� as well
as terms proportional to powers of a, we arrive at

�nonuniv
�2� =

4T2

3
g1�

2 b
0

� d 

 2 + �2b�2 log
 

2a
=
�T2

3
g1�

2 log
b

a
,

where we used that �0
�dx log x / �1+x2�=0. Combining the

universal and nonuniversal parts together, we obtain

��2� = −
�

3
g1�

2 T2�1 − 2 log
b

a
� , �85�

which coincides with Eq. �46� upon identifying log b
a =Lb.

We see that the logarithmic renormalization of the back-
scattering coupling is reproduced within the sine-Gordon
model. However, this result could not be obtained for a local
interaction. The interaction must have a finite range, which is
larger than the short-distance cutoff in the theory.

Another model, which we consider for completeness, cor-
responds to a long-range potential, i.e., to an interaction
peaked near q=0 in the momentum space. To describe this
situation, we choose

V�x� =
u

�

b

x2 + b2 ,

and assume that b	a�kF
−1, so that the 2kF component of the

potential V�2kF�=u exp�−2kFb� is exponentially small. Such
interaction is not considered in the g-ology, and we will not
express its parameters in terms of g couplings. If backscatter-
ing is neglected completely, the problem is exactly soluble
either via bosonization or Dzyaloshinskii-Larkin diagram-
matic formalism.34,35 It turns out that, somewhat surprisingly,
corrections to the exact solution are small not exponentially
but only algebraically, in parameter 1 /kFb. The reason is that
logarithmic terms in functions F� �cf. Eq. �84��, which re-
flect correlations in motion of free fermions, introduce
branch cuts into the integrals. The contribution of these
branch cuts to the result is much larger than the exponen-
tially small contribution of the poles in the interaction poten-
tial. Evaluating the integrals and keeping only the leading
terms, we arrive at

��2� =
T2

48�2u2
 sin 4kFa

bkF
ln

2eb

a
−

cos 4kFa

2kF
2ab

+ O� 1

kF
4a2b2�� ,

where e=2.718. . .. The universal term, which is proportional
to the 2kF component of the interaction, is exponentially
small, and we do not retain it here.

In the opposite case of a short-range interaction, i.e., for
b�a�kF

−1 ,��2� is given entirely by the universal term

��2� = −
u2

12�
T2.

IV. CONCLUSIONS

In conclusion, we performed a detailed analysis of the
temperature dependence of the specific heat for a 1D inter-
acting Fermi system. We used the g-ology model and carried
out a perturbative expansion in the couplings in the fermi-
onic language. We have shown that, to first two orders in the
interactions, the specific heat is expressed in terms of the
nonrunning couplings in the RG sense. The g4 and g2 verti-
ces appearing in C�T� are just bare vertices, while the back-
scattering g1 vertex is the effective one, renormalized by
fermions with momenta between fermionic and bosonic cut-
offs. The running backscattering amplitude on the scale of T
appears in the specific heat only at third order in perturbation
theory. The log T renormalization of the specific heat at the
lowest T, expected from the RG flow of the coupling con-
stants, then only occurs at the fourth order in the perturbation
theory, and the T dependence of the specific heat follows the
RG flow of the cube of the backscattering amplitude, in
agreement with previous studies. We explicitly demonstrated
that the absence of the logarithmic corrections below fourth
order is due to cancellation of log T terms coming from low
energies, of order T, and high energies, of the order of the
ultraviolet cutoffs in the theory. We also showed how the
diagrammatic results can be obtained within the sine-Gordon
model.
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APPENDIX A

In this Appendix, we derive Eq. �45� for X
�T���dq�2kF

2 �q ,��. The polarization operator �2kF
�q ,��

is given by Eq. �28b�. It is convenient to split X into three
terms X=X1+X2+X3 as

X1 = T�
�


0

b dq

2�2 log2 �2 + q2

4 f
2 ,

X2 = −
8

�2T�
�


0

b

dq log
�2 + q2

4 f
2 

0

�

dxdkknF�k�

�� 1

�q − i��2 − 4k2 +
1

�q + i��2 − 4k2� ,
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X3 =
32

�2T�
�


0

b

dq

0

�

dkknF�k�� 1

�q − i��2 − 4k2

+
1

�q + i��2 − 4k2��2

. �A1�

As we are only interested in a finite T contribution, we can
safely subtract T���0

� dq
2�2 log2 q2

4f
2 from X1. The rest is ultra-

violet convergent, and we can integrate explicitly over q by
setting the upper limit of the q integral to infinity. We obtain

X1 =
2

�
T�

�

���
log
���
2f

− 1 + log 2� . �A2�

Using

T�
�

��� = −
�T2

3
,

T�
�

���log��� = −
�T2

3
log T +

�T2

6
−

2T2

�
I1,

I1 = 
0

� x2 log 2x

sinh2 x
= 0.5803, �A3�

we obtain

X1 =
2T2

3

− log

T

2f
+ B� , �A4�

where B= 3
2 −log 2− 6

�2 I1=0.454. The second term, X2, con-
tains contributions both from small q, of order T, and from
large q, of order b. It is convenient to split the momentum
integral �0

b into �0
�−�b

� . The first integral can be easily
converted into the integral over the whole real q axis. The
poles in q at any finite � are located in the same half-plane,
and the q integral is nonzero only because of the branch cut
in the logarithm. Choosing the integration contour as shown
in Fig. 7, evaluating the momentum integral, performing the
frequency sum, and adding a separate contribution from �
=0, we obtain

−
8

�2T�
�


0

�

dq log
�2 + q2

4 f
2 

0

�

dkknF�k�� 1

�q − i��2 − 4k2

+
1

�q + i��2 − 4k2� =
2T2

3

log

T

2f
− B − �0.5 + log 2�� .

�A5�

The integral over large q�b involves also large frequen-
cies ��q, and the frequency sum can be safely replaced by
the integral. Typical fermionic momenta, k, are of order T
and, therefore, much smaller than q and �. Neglecting k in
the denominators of the integrand, and performing three in-
dependent integrations �over k, �, and q�, we obtain

8

�2T�
�

b

�

dq log
�2 + q2

4 f
2 

0

�

dkknF�k�� 1

�q − i��2 − 4k2

+
1

�q + i��2 − 4k2�
=

8

�3
0

�

dkknF�k�  d�
b

�

dq
1

�q − i��2

= −
2T2

3

log

2f

b
− �1

2
+ log 2�� . �A6�

Combining the two contributions, we obtain

X2 =
2T2

3

log

T

2f
− log

2f

b
− B� . �A7�

In the third term, X3, the 2D integral over q and � is ultra-
violet convergent, and we can safely set the upper limit of
the q integral to infinity. The integral again has separate con-
tributions from ��0 and from �=0. The contribution to X3
from finite frequencies is evaluated straightforwardly by
closing the contour of the q integral in the upper or lower
half-plane. We obtain �T2 /3��7−10 log 2�. The evaluation of
the contribution from �=0 requires special care because of
the poles which are avoided by replacing � by i�. The cor-
responding contribution to �3 becomes

32

�2T
0

�

dq dkknF�k�  dppnF�p�� 1

�q − i��2 − 4k2

+
1

�q + i��2 − 4p2�� 1

�q − i��2 − 4p2 +
1

�q + i��2 − 4p2�
= 4T

0

�

nF
2�x�dx = 4T2�log 2 −

1

2
� . �A8�

We emphasize that the integral in the right-hand side of Eq.
�A8� comes from an infinitesimally small region where �k
− p���.

Combining the two contributions to X3, we obtain

X3 = �log 2 +
1

2
�2T2

3
. �A9�

Collecting Eqs. �A4�, �A7�, and �A9�, we obtain

iΩ

-i-i Ω-2k Ω+2k

FIG. 7. Integration contour for Eq. �A5�.
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X =
T2

3

1 − 2 log

f

b
� . �A10�

Equation �A10� coincides with Eq. �45�.

APPENDIX B

In this appendix, we derive the result for Y
=T���dq�2kF

3 �q ,�� to logarithmic accuracy. We assume
that T is small, such that T�b ,f and that b�f, and
collect terms logarithmic in T /f and in b /f. The compu-
tational steps are the same as in Appendix A: we use the fact
that �2kF

given in Eq. �28b� is the sum of two terms and split
Y into Y1+Y2+Y3+Y4, where

Y1 = T�
�


0

b dq

4�3 log3 �2 + q2

4 f
2 , �B1�

Y2 = −
6

�3T�
�


0

b

dq log2 �2 + q2

4 f
2 

0

�

dknF�k�k

�� 1

�q − i��2 − 4k2 +
1

�q + i��2 − 4k2� , �B2�

Y3 = +
48

�3T�
�


0

b

dq log
�2 + q2

4 f
2

�

0

�

dknF�k�k� 1

�q − i��2 − 4k2 +
1

�q + i��2 − 4x2��2

,

�B3�

Y4 = −
128

�3 T�
�


0

b

dq

0

�

dxnF�x�x� 1

�q − i��2 − 4k2

+
1

�q + i��2 − 4k2��3

. �B4�

One can easily make sure that the last term Y4 is nonloga-
rithmic and can be neglected.

The momentum integral in Y1 is infrared divergent. How-
ever, we only need the thermal part of Y1. To extract it, we
subtract from the integrand in Y1 its value at �=0, i.e.,

log3 q2

4f
2 . This makes the momentum integral finite. Evaluat-

ing it and then performing the summation over frequency, we
obtain

Y1 = −
T2

�

log2 T

2f
− 0.909 log

T

f
+ ¯ � . �B5�

where dots stand for O�T2� terms. The number, 0.909, as well
as other numbers below are expressed in terms of convergent
1D integrals.

In Y2, the cutoff in the integration over q1 is relevant.
Splitting the q integral from �0

b into �0
�−�b

� and evaluating
each of the two terms separately in the same way as in Ap-
pendix A, we obtain

Y2 =
T2

�

log2 T

2f
− 3.295 log

T

f
+ log2 f

b
− log

f

b
� .

�B6�

The result from Y3 can be readily obtained from the expres-
sion for X3 in Appendix A; as to logarithmic accuracy, we
can replace log �2+q2

4f
2 in Eq. �B3� by 2 log�T /f�. We then

obtain

Y3 = 2.386
T2

�
log

T

f
. �B7�

Combining Eqs. �B5�–�B7�, we obtain that all log�T /f�
terms are cancelled out and

Y =
T2

�

log2 f

b
− log

f

b
� . �B8�

Equation �B8� coincides with Eq. �52�.
Another backscattering diagram which could possibly

give rise to logarithmic terms is diagram �3b� in Fig. 5. For a
local interaction, it reduces to a cube of the Cooper bubble,
which in one dimension coincides with �2kF

up to the overall
sign. However, one can easily verify that for b�f, this
diagram does not contain log�f /b� terms. Indeed, the cut-
off induced by the interaction imposes the restriction on
three out of four momenta and frequencies in the fermionic
lines. The 2D integral over the remaining momentum and
frequency involves all six fermionic propagators and is con-
fined to the lower limit. This implies that all variables are of
the same order, and there is no space for a logarithm.
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